Optical Communications

: Demonstrator (OCD) Status

Muthu Jeganathan and Steve Monacos

JPL

Jet Propulsion Laboratory

OCD Description

▲ A laboratory-based lasercomm terminal

 developed to validate key technologies such as beacon acquisition, precision pointing and high bandwidth tracking

Reduced complexity architecture

- OCD uses one two-axis fine steering mirror (FSM) and one detector array for acquisition, tracking and point ahead monitoring.
- ♦ Fiber-coupled laser provides thermal isolation. Also makes it easy to change lasers for different applications.
- ◆ Terminal built for data-dump from LEO/GEO orbit. Hence there is no communication detector.
- No redundancy for any components

Optical Design

- Receive at 780 nm and transmit at 840 nm
- 4-inch telescope aperture

Telescope Optics Assembly

♦ Assembly and alignment completed with Zygo interferometer

Characterization

With Lasercomm Test and Evaluation Station (LTES)

- * Tracks beacon
- * Sends data

LTES

JPL

Characterization

Transmit Channel

- **▲** Efficiency:
 - 40% measured (42% expected)
 - ♦ ~25% power lost due to obscuration and truncation
- ▲ Output Beam Profile (Near Field):
 - Nearly optimum for given aperture size and obscuration

JPL.

Transmit Channel

▲ Expected Far-field Pattern

- · · · Airy pattern
- Gaussian
- Gaussian w obscuration

Transmit Channel

▲ Measured Far-field Pattern

Receive & Boresight Channels

Beacon Tracking Channel:

- ♦ 65% transmission expected
- CCD Sensitivity is about 1 nW for 500 μs exposure
- ♦ ~20 pW/cm² intensity required in front of OCD aperture

▲ Boresight Channel:

- ♦ efficiency = 1.2 x 10⁻⁶ (or about 60 dB of attenuation)
- ♦ 1 mW fiber output power produces 1 nW at detector
 - ★ enough to properly illuminate CCD
- Need another ~16 dB attenuation for use with higher power (30 mW average) laser. Possible through
 - ★ AR coated retro mirror or
 - ★ highly transmissive dichroic beam splitter

Acq/Trk

- Acquisition and tracking implemented and tested on a separate setup
 - ♦ ~ 1 sec acquisition time when beacon is in CCD FOV
 - ♦ tracking bandwidth > 100 Hz with 2 kHz frame rate
 - acq/trk processing done using C40 DSP board
- Acq/Trk implemented and testing started on OCD with beacon from LTES
 - Detailed characterization planned in coming weeks

Electronics

PC/104 Architecture

- ▲ A PC with different form factor (i.e. same signals)
- **▲** 3.6 in x 3.8 in cards
 - small size and weight
- ▲ Low power
 - each card typically uses less than 5 W
- Commercially available for embedded controller applications
 - ♦ Conforms to the IEEE-P996 specification

PC/104 Stack

JPL

Electronics Enclosure

Includes PC/104 stack, gimbal & FSM amplifiers, interpolators and DC-DC converters

Fully Assembled OCD

- ▲ Total mass less than 25 kgs
 - ◆ TOA: 5.6 kg
 - ♦ Gimbal: 10 kg
 - ♦ Electronics & cabling: < 10 kg
- ➤ Power consumption ~50 W average
 - Peak power significantly higher when gimbal driven hard
- - ♦ 28 V DC power supply
 - 1553 bus interface
 - High speed data input for laser modulator

Fully Assembled OCD

Future plans

- Complete acq/trk performance tests and analyses
- Complete PC/104 electronic packaging
- Do environmental (thermal/vac/shake) tests
- Field test unit in a ground-ground demo (FY'98)
- Use terminal in an air-ground demo (FY'99)
- ★ Transfer results of OCD development to a protoflight development terminal

Acknowledgements

▲ A. Biswas LTES support & laser characterization

▲ G. Ortiz Laser repair and procurement

■ N. Page Optical alignment

▲ A. Portillo Software

■ B. Sanni Optical characterization

■ B. Kemp of KDEC